2025/10/09 12:34 1/5 Suites et limites

Suites et limites

Prérequis

Pour aborder ce cours sur les suites et les limites, il est essentiel de maîtriser les notions suivantes acquises au cours des classes précédentes :

- **Nombres réels :** Connaissance des propriétés des nombres réels, des opérations de base (addition, soustraction, multiplication, division) et de la représentation des nombres sur une droite numérique.
- **Fonctions :** Notions de base sur les fonctions, leur représentation graphique, leur domaine de définition et leur image.
- **Algèbre :** Maîtrise des manipulations algébriques de base, notamment le développement, la factorisation et la résolution d'équations du premier et du second degré.
- **Notion d'indice :** Compréhension de l'utilisation des indices pour désigner les éléments d'une suite (par exemple, u_n pour le n-ième terme d'une suite).
- Ce cours se situe dans la partie "Suites et fonctions" du programme de Terminale Générale, après l'étude des fonctions et avant l'introduction au calcul intégral.

Chapitre 1 : Introduction aux suites numériques

Définition d'une suite

Une **suite numérique** est une fonction définie sur l'ensemble des entiers naturels ($^{mathbb}N$) ou une partie de cet ensemble, à valeurs dans l'ensemble des nombres réels ($^{mathbb}R$). On note généralement une suite $\binom{u_n}{n}$ où n est l'indice et n est le terme général de la suite.

Exemple : La suite définie par $u_n=2n+1$ pour tout $n\in mathbb{N}$ est une suite arithmétique. Les premiers termes de cette suite sont : $u_0=1$, $u_1=3$, $u_2=5$, $u_3=7$, etc.

Manières de définir une suite

Il existe plusieurs manières de définir une suite :

- Par son terme général : Comme dans l'exemple précédent, on donne une formule explicite pour calculer ^{u}n en fonction de n .
- Par récurrence : On donne le premier terme u_0 (ou u_1) et une relation de récurrence qui permet de calculer u_{n+1} en fonction de u_n .

Exemple : La suite de Fibonacci est définie par $u_0=0$, $u_1=1$ et $u_{n+2}=u_{n+1}+u_n$ pour tout $n \in mathbb{N}$.

Représentation graphique d'une suite

On peut représenter graphiquement une suite en plaçant les points de coordonnées $\binom{n,u_n}{n}$ dans un repère.

Chapitre 2 : Suites arithmétiques et géométriques

Suites arithmétiques

Une **suite arithmétique** est une suite dont chaque terme est obtenu en ajoutant une constante, appelée **raison** (notée r), au terme précédent. On a donc $u_{n+1}=u_n+r$ pour tout $u_n=u_n+r$ pour tout $u_n=u_n+r$

Formule du terme général : $u_n = u_0 + nr$

Exemple : La suite définie par $u_n=3n+2$ est une suite arithmétique de raison r=3 et de premier terme $u_0=2$.

Suites géométriques

Une **suite géométrique** est une suite dont chaque terme est obtenu en multipliant le terme précédent par une constante, appelée **raison** (notée q). On a donc $u_{n+1}=q.u_n$ pour tout $n \in mathbb{N}$.

Formule du terme général : $u_n = u_0 \cdot q^n$

Exemple : La suite définie par $u_n = 5.2^n$ est une suite géométrique de raison q=2 et de premier terme $u_0 = 5$.

Chapitre 3: Limites d'une suite

Notion intuitive de limite

On dit qu'une suite $\binom{u_n}{n}$ converge vers une limite l si les termes de la suite se rapprochent de plus en plus de l lorsque n devient de plus en plus grand.

Définition formelle de la limite

N

https://wikiprof.fr/ Printed on 2025/10/09 12:34

On dit que la suite converge vers si, pour tout nombre réel , il existe un entier tel que n>N pour tout , on ait $|u_n-l|<\epsilon$.

Suites convergentes, divergentes et non définies

- Suite convergente : Une suite qui converge vers une limite finie.
- **Suite divergente :** Une suite qui ne converge pas vers une limite finie. Elle peut tendre vers l'infini (positivement ou négativement) ou osciller.
- Suite non définie : Une suite dont les termes ne sont pas définis pour certaines valeurs de n.

Chapitre 4 : Opérations sur les limites

Limites de sommes, produits et quotients

 $\operatorname{Si}^{\binom{u_n}{n}}\operatorname{et}^{\binom{v_n}{n}}\operatorname{sont}$ deux suites convergentes de limites respectives l et l, alors :

Limites et inégalités

$$\operatorname{Si}^{\binom{u_n}{n}}\operatorname{et}^{\binom{v_n}{n}}\operatorname{sont}$$
 deux suites telles que $u_n\leqslant v_n$ pour tout n suffisamment grand, et si $\lim_{n\to\infty} u_n=l$ $\lim_{n\to\infty} u_n=l$ et $u_n=l$, alors $u_n=l$, alors $u_n=l$

Chapitre 5 : Limites et comparaison de suites

Théorème des gendarmes (ou théorème de comparaison)

Si
$$\binom{u_n}{r}$$
, $\binom{v_n}{r}$ et $\binom{w_n}{r}$ sont trois suites telles que $\binom{u_n \leqslant v_n \leqslant w_n}{r}$ pour tout $\binom{n}{r}$ suffisamment grand, et si $\lim_{n \to \infty} \frac{u_n \leqslant v_n \leqslant w_n}{r}$ pour tout $\binom{n}{r}$ suffisamment grand, et si $\frac{1}{r}$ et $\frac{1}{r}$ alors $\frac{1}{r}$

Suites monotones et bornées

- Une suite est **monotone croissante** si $u_{n+1} \ge u_n$ pour tout n.
- Une suite est **monotone décroissante** si $u_{n+1} \le u_n$ pour tout n.
- Une suite est **bornée** si elle est majorée et minorée.

Chapitre 6 : Applications et suites définies par récurrence

Résolution de problèmes impliquant des limites de suites

Les limites de suites sont utilisées pour résoudre de nombreux problèmes, notamment dans l'étude des fonctions, des équations différentielles et des probabilités.

Étude de suites définies par récurrence

Pour étudier une suite définie par récurrence, on peut utiliser les méthodes suivantes :

- Calcul des premiers termes : Cela permet de se faire une idée du comportement de la suite.
- Supposition d'une limite : Si la suite semble converger, on peut supposer qu'elle a une limite l et essayer de la déterminer en utilisant la relation de récurrence.
- Démonstration par récurrence : On peut utiliser le principe de récurrence pour démontrer que la suite converge vers une limite donnée.

Exemple: Soit la suite définie par $u_0^{=1}$ et $u_{n+1}^{=} \sqrt{2+u_n}$. On peut montrer que cette suite converge vers 2.

Résumé

- Une **suite numérique** est une fonction définie sur $mathbb{N}$ à valeurs dans $mathbb{R}$.
- Une suite arithmétique a une raison r : $u_n = u_0 + nr$
- Une suite géométrique a une raison $q: u_n=u_0.q^n$.
- La limite d'une suite $\binom{u_n}{\epsilon}$ est ℓ si $\binom{|u_n-l|<\epsilon}{\epsilon}$ pour tout $\ell>0$. ℓ et tout $\ell>0$. ℓ lim $\ell=0$ ℓ lim $\ell=0$ lim $\ell=0$ ℓ lim $\ell=0$ lim $\ell=0$ ℓ lim $\ell=0$ lim $\ell=0$

$$\lim_{\left(u_{n}\right)} \left(v_{n}\right) = \frac{\left(\lim_{u} n\right)}{\left(\lim_{v} n\right)} \lim_{\left(\sin v\right)} n \neq 0$$
(si v).

https://wikiprof.fr/ Printed on 2025/10/09 12:34

^{*}Théorème : * Toute suite monotone et bornée converge.

- Théorème des gendarmes : Si $u_n \leqslant v_n \leqslant w_n$ et $u_n = \lim_{w \to \infty} n = l$, alors $v_n = l$
- Une suite monotone et bornée converge.
- Les suites définies par récurrence peuvent être étudiées par calcul des premiers termes, supposition d'une limite et démonstration par récurrence.

From:

https://wikiprof.fr/ - wikiprof.fr

Permanent link:

 $https://wikiprof.fr/doku.php?id=cours:lycee:generale:terminale_generale:mathematiques:suites_et_limites\&rev=1751919456$

Last update: 2025/07/07 22:17

